
Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 1 of 45

OpenESB Standalone Edition V3.0
Web admin console

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 2 of 45

Document identifier:
Pymma document: 770-003

Location:
www.pymma.com

Editor:
Pymma Services: contact@pymma.com

Abstract:
This document explains how to manage OpenESB Standalone Edition with the web console. It provides a
guide to install component and shared libraries, deploy services assemblies and monitor your instance.

Status:
This Document is in a beta state

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 3 of 45

ABOUT PYMMA CONSULTING

Pymma Services is a technical architect bureau founded in 1999 and headquartered in London, United Kingdom. It
provides expertise in service oriented integration systems design and implementation. Leader of OpenESB project,
Pymma is recognised as one of the main actors in the integration landscape. It deeply invests in open source projects
such as Drools rules engine. Pymma is a European company based in London with regional offices in France,
Belgium and Canada. (contact@pymma.com or visit our website on www.pymma.com)

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 4 of 45

Copyright

Copyright © 2014, Pymma Services LTD. All rights reserved. No part of this publication may be copied or
distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language,
in any form or by any means, electronic, mechanical, magnetic, manual, optical, chemical or otherwise; or disclosed
to third parties without the express written permission of Pymma Services LTD, Inc.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Pymma Services LTD. This manual is provided “as is and Pymma is not responsible for and expressly disclaims all
warranties of any kind with respect to third-party content, products, and services. Pymma will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services

Trademark Notice

Pymma is a registered of Pymma Engineering LTD. Java is registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 5 of 45

Contents

1 Introduction..7

1.1 OpenESB entities..7

1.1.1 Shared Library...7

1.1.2 Components ..7

1.1.3 Service unit ...8

1.1.4 Service assembly...8

2 OpenESB life cycles ..9

2.1 Shared library life cycle ..9

2.2 Component life cycle ..9

2.3 Service assembly life cycle ...10

2.4 Service Unit lifecycle..10

3 Web admin console overview ..11

3.1 Console configuration...11

3.2 Browser...11

3.3 Log to the console...12

3.3.1 Create a new user ..12

3.3.2 Change a password..14

3.4 Console overview ...14

4 Dashboard ..15

5 Instances...17

5.1 General..17

5.2 Logger...18

5.2.1 Set up log level..18

5.3 NMR Monitoring ..19

5.4 System Monitoring ...20

6 Shared Libraries ...21

6.1 Install a shared library...21

6.2 Uninstall a shared library ..22

6.3 Shared library details ..22

7 Components ...24

7.1 Install a new component ...24

7.2 Uninstall a component ..25

7.3 Component detail ..26

7.3.1 General ..26

7.3.2 Configuration ..27

7.3.3 Application configuration ...28

7.3.4 Application variables ..30

7.3.5 Descriptor..32

7.3.6 Loggers ...32

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 6 of 45

7.4 Shared libraries ...33

7.5 Monitoring ..33

8 Services assemblies..35

8.1 Service unit overview ...35

8.2 Service assembly overview...36

8.2.1 Deploy a new service assembly ..37

8.3 Undeploy a service assembly..38

8.4 Service assembly detail...39

8.4.1 General ..39

8.4.2 Service Unit overview...40

8.4.3 Service assembly descriptor ..41

8.4.4 Service assembly monitoring ..41

9 Endpoints ...43

10 What’s next ..44

11 Help and support ..45

11.1 From the community...45

11.2 From Pymma...45

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 7 of 45

1 Introduction
OpenESB Standalone edition embedded a new, light and smart web admin console. Very fast, it allows
administrator to manage an OpenESB instance and install, deploy, start, stop components or services assemblies.
In this document, we will provide a short summary of OpenESB components’ life cycles. This knowledge is
essential to manage OpenESB. Likewise, we recommend you to read JBI specifications and understand how
components or service assemblies interact with the bus. http://download.oracle.com/otndocs/jcp/jbi-1.0-fr-eval-oth-
JSpec/

1.1 OpenESB entities
OpenESB defines 5 entities to manage. They are:

1. Shared library
2. Service Engine
3. Binding component
4. Service unit
5. Service assemblies

In the next paragraphs, we will explain in brief what these entities in OpenESB are and what their roles are. If you
know these concepts, jump to the next chapter.

1.1.1 Shared Library
Shared libraries are Java libraries that can be shared by many components. By default, OpenESB components use 3
shared libraries.

 wsdlsl.jar
 wsdlextlib.jar
 encoderlib.jar
The two first libraries are helpful to process WSDL documents. The last one encoderlib.jar allows components
to support encoding features. It is up to the OpenESB administrator to decide which shared library must be
installed regarding the component he wants to install later. We advise you to install wsdlextlib.jar and
encoderlib.jar before installing the components.

1.1.2 Components
OpenESB supports two kinds of components: Service Engines and Binding Components. OpenESB only
distinguishes between these two kinds through a flag; the model and API are otherwise identical. However, by
convention, Service Engines and Binding Components implement different functionalities in OpenESB.

1.1.2.1 Binding component

Binding components are used to send and receive messages via particular protocols and transports. They serve to
isolate the OpenESB environment from the particular protocol by providing normalisation and denormalisation from
and to the protocol-specific format, allowing the OpenESB environment to deal only with normalized messages.

1.1.2.2 Service engines

Service Engines are the business logic drivers of the OpenESB. Engines can orchestrate service consumption and
provision, in the course of, for example, executing long-lived business processes. Other engines can provide simple
services, such as data transformation. Yet other engines may provide sophisticated routing or EDI services such as

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 8 of 45

message collation / de-collation facilities. Service Engines can create new services by aggregating other services.
SEs can serve as service providers, service consumers, or both.

1.1.3 Service unit
A “Service Unit” or SU is a single deployment package, destined for a single component. The contents of a SU are
opaque to JBI (other than a single descriptor file), but are transparent to the component to which it is being
deployed, as well as the design-time tooling that produced the artefacts contained by the SU. The service unit must
contain a single JBI-defined descriptor file that defines the static services produced and consumed by the service
unit.

1.1.4 Service assembly
Often multiple deployments are required to create a new service or consumer application within an OpenESB
environment. To support this directly, OpenESB provides a composite deployment capability, where deployments
meant for different components can be grouped into a Service Assembly, or SA. Such an assembly includes a
composite service deployment descriptor, detailing to which component each Service Unit contained in the SA is to
be deployed. Note that this service assembly concept is sometimes termed “composite service description”, or CSD.
A service assembly represents a composite service. Because of this interrelationship, OpenESB provides
management functions to control the life cycles of the individual units of a service assembly collectively, rather than
individually.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 9 of 45

2 OpenESB life cycles

OpenESB web admin console does not offer the same life cycles than the ones defined in JBI specifications. We
make it simpler and more accurate to production tasks.

2.1 Shared library life cycle

A shared library can have 2 states: Empty (or not installed) and Installed. When a shared library is installed, it
becomes available for the components to be deployed.

2.2 Component life cycle

A component can have 4 states: Empty (or not installed), Shutdown (Installed but not started), Started and Stopped.
Stopped stated means that a component does not accept any new message but run for the message already in
process. OpenESB web console does not offer a Shutdown to Stopped transition.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 10 of 45

2.3 Service assembly life cycle

A service assembly can have 4 states: Empty (or not deployed), Shutdown (deployed but not started), Started and
Stopped. OpenESB web console does not propose a Shutdown to Stopped transition.

2.4 Service Unit lifecycle
OpenESB web admin console does not offer a way to manage Service Unit lifecycle as detailed in JBI specifications
since Service Unit and Service Assembly are synchronized.

Service unit state Service Assembly State
Empty Empty
Shutdown Shutdown
Started Started
Stopped Stopped

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 11 of 45

3 Web admin console overview
3.1 Console configuration
By default, OpenESB web admin console is listening on the port 4848. To access to the console check if the
OpenESB instance you want to manage is running. Open a browser and type the address with the following pattern:
http://${host}${host}/webui where ${host} is the host where OpenESB instance is running and ${port} the listening
port for the console. By default the address to access to the console is http://localhost/4848/webui.
Default port can be changed to set up a more accurate port. To do it, modify the content of ${OESE-HOME}\OE-
Instance\config\openesb.yaml.

3.2 Browser
OpenESB web admin console has been tested with the latest versions of Firefox, Chrome and Safari. Exhaustive
tests have not been made with Internet Explorer.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 12 of 45

3.3 Log to the console

OpenESB web console access is protected by a login / password screen. By default login = admin and password =
admin. You can change the admin password or add new users. There is not user hierarchy with more or less rights in
the web admin console. You simply have the right to access the console or not.

3.3.1 Create a new user
OpenESB web admin console users are stored in the following file ${OESE-HOME}\OE-Instance\config\mgmt-
users.properties.

Login and password are stored in users.properties file. Passwords are encrypted for obvious security purposes. So,
the administrator can provide access to the console to new users by adding new properties in this file.
You can use any other properties files to store the users and their password. The properties file used by OpenESB is
defined in the ${OESE-HOME}\OE-Instance\config\openesb.yaml.

Let’s add a new user “pymma” with the password “Services”. In the mgmt.-users.properties file, add the user
pymma:

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 13 of 45

To encrypt the password, OpenESB proposes you a simple tool to it. This tool is the java class
PasswordManagement found in jar file ${OESE-HOME}\OE-Instance\lib\openesb-standalone-container-xxxxxx,
where xxxxx is the version or the build number.
Open a console and execute the following command where my_password is the password you want to encrypt:
java -cp lib/openesb-standalone-container-xxxxx.jar
net.openesb.standalone.security.utils.PasswordManagement my_password

Copy and paste the password to the properties files.

Save the file, reset OpenESB instance to take into account the new user. OpenESB offers an option to avoid an
OpenESB reset. To do it, add the options reload and interval in the file ${OESE-HOME}\OE-
Instance\config\openesb.yaml as display below.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 14 of 45

3.3.2 Change a password
To change an existing password, replace the old password with the new one in the user management file (by default:
${OESE-HOME}\OE-Instance\config\mgmt-users.properties).

3.4 Console overview

The console is divided in two parts, the main menu on the left and the details on the right. On the top right user
name is displayed, click on it to log out.
During the console design, we tried to keep it simple, straightforward and fast. You can use the web admin console
to monitor OpenESB instances, install components and deploy services assemblies.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 15 of 45

4 Dashboard

Overview
Key Value Comment

Instance Server (2.4.0) OpenESB V3.0 runs with an instance version 2.4. The
versions are not synchronised.

PID 8884@PymmaTH510 Instance unique ID. The machine where the instance
runs is PymmaTH510

JVM Java HotSpot(TM) 64-Bit Server
VM (24.51-b03)

JVM version used to run the instance

Java version 1.7.0_51, vendor Oracle
Corporation

Java version used to run the instance

Java_Home F:\jdk\jdk1.7.0_51_64\jre Java Home defined in OE instance environment

Memory
Key Explanation

Total Memory Memory used by OE instance
Heap memory Memory used to store Java objects used by OE instance
Non Heap Memory Memory used to store loaded classes and other meta-data. JVM code

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 16 of 45

itself, JVM internal structures, loaded profiler agent code and data,
etc.

These 3 pictures give you an overview of the installed elements in OE instances.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 17 of 45

5 Instances

Instance screen provides more details of the instance itself.

5.1 General
General Informations

Key Value Comment
Instance name Server “Server” is the instance default name. This name can

be set up in the file ${OESE-HOME}\OE-
Instance\config\openesb.yaml. You can give a more
significant name to the instance such as
“production”, “Finance”…

Version 2.4.0- Instance version. Please note that OpenESB and
Instance versions are not synchronised

Build Number 141202_1047 Build number for the instance

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 18 of 45

5.2 Logger

OE instance offers a complete set of logger to monitor, trace and debug instance behaviour. A logger is associated
with the classes which have the same package than the Logger name.
Each logger can be set individually.

 ALL: indicates that all messages should be logged.
 FINEST: Maximum verbosity
 FINER: Moderate verbosity
 FINE: Minimal verbosity
 CONFIG: Messages related to server configuration
 INFO: Messages related to server configuration or server status, excluding errors
 WARNING: Warnings, including exceptions
 SEVERE: Events that interfere with normal program execution
 DEFAULT: revert to the parent logger level or INFO if none
 OFF: is a special level that can be used to turn off logging

During development and test time, log level can be set from INFO to FINEST. Sometimes, FINER and FINEST are
too verbose and can confuse log analysis.

For performance test and production, log level can be set from SEVERE to INFO. We recommend you to set up
your loggers to INFO since higher levels can miss significant messages.

5.2.1 Set up log level
To set up a log level, just click on the selected level. You don’t need to reset the instance to take into account a new
log setting.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 19 of 45

5.3 NMR Monitoring
NMR is the acronym of Normalized Message Router. The NMR can be seen as a bus where messages pass through
(For more information on the NMR, have a look on JBI specifications). Many statistics are generated from the NMR
and reported on this screen. Initial time for the statistics is the time OpenESB starts up. Statistics are reset when the
instance is reset.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 20 of 45

5.4 System Monitoring

System monitoring displays additional statistic on the OE instance. These elements (Memory, Thread and Garbage
Collecting) can be useful for optimising your instance and improving its scalability.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 21 of 45

6 Shared Libraries
Shared libraries are Java libraries that can be shared by many components. The difference between a Java library
and a shared library comes from a jbi.xml file added in the shared library jar file. For more details on jbi.xml, have a
look at JBI specifications.

6.1 Install a shared library

To install a new shared library, click on the install button then chose the file you want to install

Once the file is chosen, click on or if you want to cancel the installation.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 22 of 45

6.2 Uninstall a shared library

To uninstall a shared library, click on the associated bin icon and confirm it.

6.3 Shared library details
Click on a shared library name to display Shared Library details.

A detailed screen opens with three tabs: General, Descriptor and Components

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 23 of 45

The General screen provides General elements on the shared library such as Name or Version.

The Descriptor screen displays the content of the descriptor jbi.xml associated with the shared library.

The Components screen lists the components which use the shared library.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 24 of 45

7 Components
OpenESB supports two kinds of components, Service Engines and Binding Components. OpenESB only
distinguishes between the two kinds through a flag; the model and API are otherwise identical. However, by
convention, Service Engines and Binding Components implement different functionality in OpenESB.
Binding components are used to send and receive messages via particular protocols and transports. They serve to
isolate the OpenESB environment from the particular protocol by providing normalisation and denormalisation from
and to the protocol-specific format, allowing the OpenESB environment to deal only with normalized messages.
Service Engines are the business logic drivers of the OpenESB. Engines can orchestrate service consumption and
provision, in the course of, for example, executing long-lived business processes. Other engines can provide simple
services, such as data transformation. Yet other engines may provide sophisticated routing or EDI services such as
message collation / de-collation facilities. Service Engines can create new services by aggregating other services.
SEs can serve as service providers, service consumers, or both.

The Component main screen lists OpenESB components installed in an OE instance. Component state, Version and
Build number are provided as well.
States can be:

Component states
State Description

Shutdown The component is installed but does not consume any message for
processing

Stop The component is installed and does not consume any new message
but process the current messages already consumed.

Start The component is installed. It consumes new messages and
processes them.

Unknown This state indicates the console is not able to determine component
state.

7.1 Install a new component

To install a new component, click on the install button then chose the file you want to install

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 25 of 45

Once the file chosen, click on or if you want to cancel the installation.

There is no difference between a Service engine and a Binding component installation.

7.2 Uninstall a component
You can uninstall a component in the state shutdown only.

To uninstall a shutdown component, just click on the associated bin icon and confirm it.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 26 of 45

7.3 Component detail

Component detail screen displays 8 tabs

Tab Comment
General Provides general information on the component
Configuration Configures dynamically the component. Available when the

component is started.
Application configuration Component Application Configurations are named collections of

properties that allow Service Assemblies to configure a target
component. There is no application configuration for Service Engine
component.

Application Variable Application variables allow you to define a list of variable names
and values along with their type. The application variable name can
then be used as a token in a WSDL extensibility element attribute
for the component

Descriptor Displays 'jbi.xml' contents associated with the component.
Logger Manages component loggers. Each logger can be Set individually.
Shared libraries Lists the shared libraries used by the component
Monitoring Provides monitoring metrics such as active endpoints and message

number.

7.3.1 General
General tab displays general information on the component such as: Name, Type, Version, Build number…
This tab can be used to manage component state. (See Component life cycle chapter above).

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 27 of 45

General tab lists the Service Units associated with the component. For OpenESB new joiners, a Service Unit can be
seen as a component configuration. An HTTP Service unit defines a port, an endpoint and interface for the HTTP
component.
When a component state changes, the state of the Services Units linked with the component changes as well.

7.3.2 Configuration
Each component has its own configuration. Some can be very simple (Ex: file) but some more tricky to optimise
(FTP, BPEL). It depends on component’s complexity.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 28 of 45

Please refer to the component configuration guide for more details on the component.
The configuration setup can be done only when the component has been started.

7.3.3 Application configuration
Application Configurations allow you to configure the external connectivity parameters for a JBI application and,
without changing or rebuilding the application, deploy the same application to a different system. For example, if
you have an application that is running in a test environment, you can deploy it to a production environment using
new connectivity parameters without rebuilding the application.
The connectivity parameters for OpenESB Binding Component are normally defined in the WSDL service
extensibility elements. When you create and apply application configurations for these parameters, the values
defined for the application configuration override the values defined in the WSDL elements. You apply the
configurations to the Composite Application by entering the application configuration name in the Config Extension
Name property for the appropriate endpoint in the Service Assembly.
For more detail, please read our document: 770-006: OpenESB Multiple environments

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 29 of 45

7.3.3.1 Create an application configuration

Select the tab Application Configurations and click on the Add button. Each binding component has its own
configuration and the form to fill to create a configuration is different for each component.

Database BC Application Configuration form

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 30 of 45

FTP BC Application Configuration form

7.3.4 Application variables
Application variables allow you to define a list of variable names and values along with their type. The application
variable name can then be used as a token in a WSDL extensibility element attribute for the component. For

example, you could define a string variable named ServerName with a value ofMyHost.com. To reference this in

the WSDL document, you would enter ${ServerName}. When you deploy an application that uses application
variables, any variable that is referenced in the application's WSDL document is loaded automatically.
For more detail, please have a look on our document: 770-006: OpenESB Multiple environments

7.3.4.1 Create Application variable

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 31 of 45

Enter the variable name, select the type (String, Number, Boolean, Password) and the value.

Values can be changed directly in the list.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 32 of 45

7.3.5 Descriptor

Descriptor tab displays the component descriptor jbi.xml. It cannot be modified from the console.

7.3.6 Loggers

The Logger tab is used to set up component loggers. They are numerous and provide complete information on
component behaviour.

Each logger can be set individually.

 ALL: indicates that all messages should be logged.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 33 of 45

 FINEST: Maximum verbosity
 FINER: Moderate verbosity
 FINE: Minimal verbosity
 CONFIG: Messages related to server configuration
 INFO: Messages related to server configuration or server status, excluding errors
 WARNING: Warnings, including exceptions
 SEVERE: Events that interfere with normal program execution
 DEFAULT: revert to the parent logger level or INFO if none
 OFF: is a special level that can be used to turn off logging

During development and test time, log level can be set from INFO to FINEST. FINER and FINEST are verbose and
can confuse log analysis.

For performance test and production, log level can be set from SEVERE to INFO. We recommend you to set up the
logger to INFO since higher level can miss significant messages.

7.4 Shared libraries

Shared libraries tab lists the shared library used by the component.

7.5 Monitoring

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 34 of 45

Monitoring provides metrics on the component. Message part of the screen will be used by the next versions.

Description Comments
Number of Accept operations In each OpenESB component an endless loop check id a

message is available for processing. This loop is named
Accept Operation. It can be used to check if the
component is alive.

Number of active Endpoints Active point associated with the component
Number of active MessageExchanges Message currently in process
Number of waits that didn't find any work
Number of active MessageExchanges Max Number of messages max processed parallel by the

component
Number of queued MessageExchanges Max Number of messages max waiting for component

processing
Number of queued MessageExchanges Number of messages waiting for component processing
Number of DONE requests received Number of messages completely processed since the

component started.
Number of ERROR requests received Error means non happy path not defined by the

contract of service. Ex: Java exception
Number of faults received Fault means non happy path not defined by the

contract of service.
Number of replies received No comment
Number of requests received No comment
Number of Send operations No comment
Number of DONE requests sent Number of requests successfully received by the

addressee.
Number of ERROR requests sent Error means non happy path not defined by the

contract of service. Ex: Java exception
Number of faults sent Fault means non happy path not defined by the

contract of service.
Number of replies sent No comment
Number of requests sent No comment
Number of SendSync operations Number of requests send in a synchronous mode

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 35 of 45

8 Services assemblies
A service assembly is the unit of deployment for OpenESB. You install components and shared libraries but you
deploy service assemblies.

8.1 Service unit overview
Service assembly architecture is detailed below

A service assembly is the element to be deployed on OpenESB; it contains one or more service units. A service unit
can be seen as a configuration for a component. The configuration is also named an endpoint. When the service unit
is deployed, the component reads the service unit jbi.xml and creates a configuration by using jbi.xml parameters.
So a component supports many endpoints or many configurations at the same time.

Let’s take an example with Email Binding Component.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 36 of 45

Email BC and Service Units configuration

During design time when creating Service Units, we associate them with a component type (Ex: BPEL or Email
BC). Then during deployment, the component reads service unit configurations (jbi.xml), creates internal
configurations and declares this configuration or endpoint to OpenESB.
In the example above:

1. We deploy three service units linked at design time with Email BC. Each SU (service Unit) defines a
connection to an email box.

2. Email BC creates 3 configurations and creates 3 connections to the email boxes and declare 3 endpoints to
OpenESB.

3. A partner wants to send a message to an email box. In the message, a destination endpoint is added in the
message header. Note that the partner does not know that Email BC deals with these endpoint but he just
knows the endpoint that provides the email box services.

4. OpenESB knows the relationship between the endpoint and Email BC and routes the message to Email BC.
5. When Email BC receives a message, it introspects jbi.xml to find a relationship between the endpoint and

the email box.
6. Then Email BC sends the message to the email box corresponding to the endpoint.

This mechanism is well described in JBI specifications.

8.2 Service assembly overview
Generally, an OpenESB application is made up with many service units.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 37 of 45

The example above displays a simple service assembly with 3 services units.
1. SOAP SU
2. BPEL SU
3. JMS SU

OpenESB beginners frequently ask the question: Why do we have to deploy a service assembly and not the BPEL
SU, the JMS SU and the SOAP SU separately. The reason is easy to understand. If you had to deploy a Service Unit
separately, you would have to define its connection with the other SUs and the external world as well.
A service assembly is more than a set of service units. A service assembly manages the relationship (connections)
between service units and between the service units and the outside world. This is simply the reason the unit of
deployment is the Service Assembly.
Connections definitions are stored in the jbi.xml of the service assembly.

Connection set in JBI.xml

8.2.1 Deploy a new service assembly
Select Service Assemblies in the main menu.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 38 of 45

Click on the button deploy then chose the file you want to deploy.

Once you choose the file click on or if you want to cancel the deployment.

8.3 Undeploy a service assembly
You can undeploy a Service Assembly in a state shutdown only
.

To undeploy a shutdown SA, just click on the associated bin icon and confirm it.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 39 of 45

8.4 Service assembly detail

8.4.1 General

The General tab is used to manage the Service Assembly life cycle. To start, stop or shutdown the Service
Assembly, just click on the relevantbutton.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 40 of 45

Note the service unit states are identical to the SA state.
Nevertheless, it can happen in some cases that the console is unable to ascertain the state of a service unit. It is a sign
that something wrong happened during SU deployment.

In the Service Unit list, note the target name is corresponding to the component that will deploy the service unit.

8.4.2 Service Unit overview

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 41 of 45

The descriptor tab displays the jbi.xml of the Service Unit.

8.4.3 Service assembly descriptor

The tab service assembly displays the file jbi.xml associated with the service assembly.

8.4.4 Service assembly monitoring

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 42 of 45

Monitoring the service assembly provides time statistic on the service assembly.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 43 of 45

9 Endpoints
Provides the endpoint list registered in OpenESB.

In/ Output indicates if the endpoint is an inbound or outbound endpoint.
Comment: Some endpoints names finish by the word “redeliveryLoopback”, for example:
http://www.sun.com/jbi/qos/redelivery,sun-http-binding,redeliveryLoopback.

These endpoints are generated by OpenESB for “Quality of Services” purposes.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 44 of 45

10 What’s next
For a better understanding of component and Service assembly, please have a look at JBI specifications.
For Application configurations and application variables, please have a look at our document 770-006 OE Multiple
environment.

Doc: 770-003: OpenESB Standalone Enterprise Edition Web Admin Console
Copyright © Pymma Services 2014. All Rights Reserved. Page 45 of 45

11 Help and support

11.1 From the community
You can find all our OpenESB documentations on the OpenESB official web site:
www.open-esb.net.
If you have any questions or would like to share your feedback, use the OpenESB forum at:
http://openesb-community-forum.794670.n2.nabble.com
Feel free to notify us with a bug or suggest how to improve our services on :
https://openesb.atlassian.net/secure/Dashboard.jspa

11.2 From Pymma
Pymma is deeply involved in the community and offers services and consulting on OpenESB. Pymma has
professional services that can assist you from the development of your SOA design, implementation and ongoing
management. All of our skills and background are based on our extensive first-hand experience and industry-leading
methods.

Pymma releases an OpenESB Enterprise Edition with many additional enterprise features and a professional
support.

In addition to OpenESB development, Pymma designed a new Service-Oriented development process named
Rebecca to help business, architect and development team during the design and the implementation of their service
oriented projects with OpenESB or any other service oriented development tool.

Feel free to contact us by email at contact@pymma.com for any further information on our OpenESB Services

